Abstract

To explore the mechanism of cellulose acetate (CA)/thermoplastic polyurethane (TPU) on the fabrication of helical nanofibers, a series of experiments were conducted to find the optimum spinning conditions. The experimental results show that the CA (14 wt%, DMAc/acetone, 1/2 volume ratio)/TPU2 (18 wt%, DMAc/acetone, 3/1 volume ratio) system can fabricate helical nanofibers effectively via co-electrospinning. We focus on the interfacial interaction between the polymer components induced by the polymer structure and intrinsic properties, including solution properties, hydrogen bonding, and miscibility behavior of the two solutions. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) are employed to investigate the interfacial interaction between the two phases of the polymer system. The analysis results provide the explanation of the experimental results that the CA/TPU system has the potential for producing helical nanofibers effectively. This study based on the interfacial interaction between polymer components provides an insight into the mechanism of CA/TPU helical fiber formation and introduces a richer choice of materials for the application of helical fibers.

Highlights

  • Helical structures with broad spectrum of applications in the fields of nanoscale sensors, filtration materials, oil sorbents, solar cells, and so on [1, 2] have attracted extensive attention due to their large surface-area-to-volume ratio and high porosity

  • The experimental results show that the cellulose acetate (CA)/TPU dissolved in DMAc/Acetone (TPU2) system could form helical nanofibers effectively because the TPU2 solution enables lower interfacial tension with CA solution

  • Based on the interfacial interaction induced by the polymer structure and intrinsic properties, we explore the mechanism of CA/thermoplastic polyurethane (TPU) helical structures from the three aspects: solution properties, hydrogen bonding, and miscibility behavior of the two solutions

Read more

Summary

Introduction

Helical structures with broad spectrum of applications in the fields of nanoscale sensors, filtration materials, oil sorbents, solar cells, and so on [1, 2] have attracted extensive attention due to their large surface-area-to-volume ratio and high porosity. We compared three component systems, Nomex/TPU, PAN/TPU, and PS/TPU, which represent three kinds of polymer composition arrangements in co-electrospinning, and explored the role of polymer chain rigidity, miscibility, and hydrogen bonding on the formation of helical fibers. Different CA solution concentration and solvent systems (volume ratio of DMAc to acetone) were applied to find the processing conditions of fine CA fibers.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.