Abstract

Carbonate apatite (CO3Ap) is expected to be an ideal bone substitute since it can harmonize with the bone remodeling cycle. The aim of this study is to fabricate a CO3Ap bone substitute from gypsum (calcium sulfate, CaSO4·2H2O) hardening bodies based on dissolution-precipitation reaction. Calcium sulfate hemihydrate mixed with water at a water-to-powder ratio of 0.5 was packed in a split stainless mold and kept at room temperature for 24 hours to obtain set CaSO4·2H2O. The set CaSO4·2H2O was hydrothermally treated in the presence of disodium hydrogen phosphate (Na2HPO4) and sodium hydrogen carbonate (NaHCO3). The results of powder X-ray diffraction and Fourier transform infrared spectroscopy indicated that CO3Ap block could be fabricated from the set CaSO4·2H2O block by hydrothermal treatment with Na2HPO4 and NaHCO3. When the treatment temperature was increased, the conversion rate to CO3Ap increased. However, the carbonate content decreased with increasing treatment temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.