Abstract
Carbon nanofiber (CNF) and silicon carbonitride (SiCN) ceramic nanocomposites (SiCN/CNF) are fabricated by in-situ growth of CNFs in SiCN ceramics during ceramic transformation of polymeric precursors of polysilazanes (PSZ). Metal catalyst precursors are mixed into the polysilazane liquid forming metal particles from decomposition under heating during the pyrolysis. At certain temperatures, ethylene was introduced as a carbon source to induce the growth of CNFs over the metal particles in the ceramic body followed by heating to higher temperatures to complete the pyrolysis. In this way, bulk nanocomposites of SiCN/CNF are obtained as crack-free bodies although some pores are left in the sample. Scanning electron microscopy (SEM) analysis performed on the cross-section of nanocomposites revealed the distribution of needle-like nanofibers of diameter ~ 200 nm and exposed length of ~ 2 μm. The CNFs exhibited the unique multiscale nanostructure in micron hollow tubes with branched nanofiber walls. Energy dispersive X-ray spectrometer (EDX) detected carbon as the major element from the nanofibers confirming the formation of carbon nanofibers. Moreover, clusters of nanoparticles are formed on the ceramic surface from carbon depositions. The in-situ growth of CNFs in SiCN ceramics provides a one-step process potentially to be developed for fabrication of structural and functional SiCN/CNF nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.