Abstract

Carbon bridged graphitic carbon nitride (g-C3N4) was prepared by a facile supramolecular self-assembly method. Experimental results and theoretical calculations indicate C atoms were introduced into the g-C3N4 lattice by substituting the bridged N atoms. As a result, the delocalized big π bonds can be formed among the adjacent heptazine rings, which could both enhance the light absorption and promote the charge separation. Beneficial from the efficient charge separation and enhanced light absorption, the carbon bridged g-C3N4 exhibits high efficient photocatalytic activity, where the H2 evolution rate is about 7 times as high as that of pristine g-C3N4. This work demonstrates carbon bridged C3N4 can be fabricated by a simple supramolecular self-assembly process, which could be useful for the further development of high efficient g-C3N4 photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.