Abstract

ABSTRACTThe formation mechanism of hollow micron-sized polystyrene (PS) particles having numerous dents on the surface, so-called cage-like particles, obtained from seeded dispersion polymerization (SDP) of 2-ethylhexyl methacrylate (EHMA) with low molecular weight (MW) PS particles stabilized by poly(vinyl alcohol) (PVA) in the presence of hexadecane droplets was investigated. It was found that association of poly(2-ethylhexyl methacrylate) (PEHMA)/hexadecane phases which occurs due to the instability of the obtained composite particles followed by a diffusion of PS ellipsoidal particles into each other is the main process responsible for the production of such unique morphology. Time course monitoring of the SDP showed that diffusion of hexadecane and/or PS and/or PEHMA phase into PS/PEHMA/hexadecane composite particles through PS shell which happens based on Ostwald ripening is the main phenomenon which results in the formation of the dents on the surface of final particles. Moreover, the experimental results revealed that in this reaction system, the polymerization develops in a faster manner rather than the SDP employing seed particles having higher MWs. Furthermore, it was observed that particles with different surface morphologies can be produced by using different hydrocarbons. The elimination of small particles which are produced in addition to the cage-like ones via decreasing the concentration of the stabilizer was another interesting finding of this research. The acquired results showed that unstable SDP is expected to be a new concept in polymerization-induced self-assembly (PISA) which employs instability of a dispersion for self-assembly of polymeric particles, and therefore, production of polymeric unique objects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call