Abstract

Flavonoid compounds play an effective role in cancer suppression and today nanocarriers play an important role in improving the physicochemical properties and transmission of these compounds. In this study, polyethylene glycol-modified albumin nanoparticles were synthesized by desolvation method; after loading of naringenin (NRG), folic acid (FA) binding to the surface of nanoparticles was performed (BSA-PEG-FA-NG-NPs). The extent of NRG trapping and FA binding was assessed indirectly using UV absorption methods. The physicochemical properties of BSA-PEG-FA-NG-NPs were investigated by DLS, SEM electron microscopy, and FTIR methods, after which their effects were evaluated on the apoptosis mechanism via MTT, flow cytometry, and qPCR methods. The BSA-PEG-FA-NG-NPs with spherical morphology had dimensions of 205nm with zeta-potential of 20.61mV and dispersion index of 0.36. The NRG encapsulation was 84% and the FA binding was 75%. Anticancer effects of BSA-PEG-FA-NG-NPs were confirmed based on inhibiting breast cancer cells (IC50: 922µg/ml), cell cycle arrest (SubG1 phase), and induction of apoptosis (upregulation of Caspase 3, 8, and 9).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call