Abstract

We describe a generic method for polymer surface modification and functionalization that is applicable for substrates of arbitrary shape. The method involves the deposition of monolayer and submonolayer films of photoactive block copolymers from supercritical fluids. Poly(styrene-b-tert-butyl acrylate), poly(S-b-tBA), block copolymer monolayers form spontaneously on polystyrene substrates by adsorption from scCO2 when hexane is used as a cosolvent. Atomic force microscopy indicates the films are flat and without pores after modification. Ethylene glycol contact angles increase linearly with deposition pressure until a constant value, equal to that of pure P tBA, is attained at pressures of 18 MPa or greater at 40 degrees C. This trend mimics the change in block copolymer solubility with pressure and indicates that the block copolymer self-assembles and orders at the surface, presenting a P tBA layer at the air interface with the PS block orienting toward the PS substrate. The P tBA layer thickness, determined by angle dependent X-ray photoelectron spectroscopy, reaches a saturated monolayer value of ca. 2 nm for pressures of 18 MPa and higher, consistent with the thickness expected for unperturbed PtBA chains comprising a wet brush. This concept for polymer surface modification initially produces a hydrophobic surface due to surface adsorption of the low surface tension PtBA block, but can also be used to prepare hydrophilic, functional surfaces, either modified or patterned with carboxylic acid groups, by photolytic or acid catalyzed deprotection/hydrolysis of the tert-butyl ester groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.