Abstract
Metals are crucial for solar energy applications, but their highly reflective surfaces limit solar energy absorption. The difficulty in manufacturing an ideal light-absorbing structure limits the incorporation of anti-reflective characteristics in metals. In this study, a femtosecond laser method was introduced to form micro-nano structures in metals, enhancing absorption by the application of silver nanoparticles and resulting in solar absorption rates of 97.2%, 98.3%, and 98.9% for aluminum, titanium, and steel, respectively. The solar reflectance was reduced by 82.3%, 62.6%, and 79.2%, respectively, compared to bare metal. Photothermal conversion and deicing tests verified a more efficient photothermal conversion ability in the composite micro-nanostructure surface. Compared to bare metal, the structure has more than twice the solar absorption efficiency and improves the deicing efficiency by 132%. The resultant material exhibits high photothermal conversion and deicing efficiencies, enhancing its potential for solar energy applications, particularly in photothermal, photovoltaic, and thermal solar technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.