Abstract

A sensitive conductive nanocomposite sensor consisting of chitosan, zinc oxide nanoparticles, and polypyrrole was developed. The sensor was prepared by oxidative polymerization of pyrrole using (NH4)2S2O8 as the oxidant followed by mixing a Chitosan-Zinc oxide composite with a different content of Chitosan. The morphology and surface area of the nanocomposites were changed by changing the percentage of chitosan. The newly developed nanocomposites also showed a significant improvement in electrical conductivity as mentioned from the cyclic voltammetry measurements of the K3[Fe(CN)6] sample. A square-wave adsorptive anodic stripping voltammetry method successfully measured Isoxsuprine hydrochloride using different types of nanocomposite modified CPEs and showed a large enhancement of stripping peak current compared to bare CPE. Consequently, the proposed sensors proved to have a promissing feature for applications in biosensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call