Abstract

Fabrication of multifunctional scaffolds with biomimicking physical and biological signals play an important role in enhancing tissue regeneration. Multifunctional features come from the composite scaffold with various bioactive molecules. However, simple, biocompatible, and controllable hybridization strategy is still lacking. In this study, we leverage naturally derived extracellular matrix (ECM) as chemically controllable hydrogel carrier to effectively load functional biomolecules. The use of ECM hydrogel takes advantage of both native functionality of ECM components and tunability of hydrogel in controlling release of loaded molecules. As a proof of concept, porous acellular bone scaffold was selected as the solid pristine scaffold to be composited with BMP-2 and VEGF, which are loaded by spinal cord-derived ECM (SC-ECM) hydrogel. Crosslinking degree of SC-ECM hydrogel is tuned by changing genipin concentration, which renders the control over release kinetics of BMP-2 and VEGF. The mechanical strength of scaffold maintained after hybridization and is not significantly decreased in wet condition. In vitro evaluations of scaffolds cocultured with osteoblasts and mesenchymal stem cells (MSCs) demonstrate the biocompatible and bioactive features resulting from the composite scaffolds. Evidenced by alkaline phosphatase test, immunofluorescence, and real-time polymerase chain reaction, differentiation of MSCs towards osteoblast lineage is significantly enhanced by composite scaffolds. Therefore, our strategy in fabricating composite scaffold enabled by biomolecule-loaded ECM hydrogel holds great promise in regenerating diverse tissue types by appropriate combinations of solid pristine scaffolds, ECM, and bioactive molecules. Impact statement We developed a bioactive molecule (e.g., growth factor, protein) loading method using extracellular matrix hydrogel as a carrier. It brings a new strategy to fabricate composite scaffolds with unique biofunctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.