Abstract

Numerous studies have explored the behaviors of ZnO–TiO2 nanoparticles resulting through various routes of fabrication. To date, the utilization of thermal treatment method to convey ZnO–TiO2 nanoparticles has never been considered. In the present study, binary (ZnO)x(TiO2)1−x NPs were effectively blended by using thermal treatment technique. Zinc nitrate and titanium(IV) propoxide with polyvinylpyrrolidone, PVP, were utilized to set up the samples. Energy-dispersive X-ray (EDX) spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction (XRD) spectroscopy, ultraviolet–visible (UV–Vis) spectrophotometer transmission electron microscopy (TEM) and photoluminescence spectroscopy were utilized to examine the impact of changing the molar proportion to the structure and optical features of (ZnO)x(TiO2)1−x NPs. The XRD spectra revealed that after calcination, the amorphous sample had transformed into crystalline nanoparticles. The prepared (ZnO)x(TiO2)1−x NPs average diameter was around 25.922–28.531 nm according to TEM analysis. The analyzation of UV–Vis spectroscopy determined the optical measurements parameters including the energy gap and Urbach energy of binary (ZnO)x(TiO2)1−x NPs. The optical energy gap varied in the range of 3.2496–3.2863 eV as the molar ratio increases from x = 0.24 to x = 0.72. The enhancement within the nanoparticles optical properties suggests a good potential for photocatalysis application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.