Abstract

Barium titanate (BaTiO3) single-crystalline nanoparticles have been prepared via high temperature mixing method (HTMM) under hydrothermal conditions. The crystallized products were characterized by X-ray diffraction (XRD), filed emission scanning electron microscopy (FESEM), X-ray fluorescence (XRF), Raman spectra, transmission electron microscopy (TEM). The BaTiO3 nanoparticles can be prepared at dilute KOH as compared with the method mixed at room temperature. The results show that the stoichiometric BaTiO3 nanoparticles were synthesized at [Ba/Ti]solution=1. The high temperature will significantly narrow the solubility difference between the barium and titanium sources and leads to a burst nucleation from the solution. The defect mechanism is used to illustrate the time-dependent transformation from cubic to tetragonal phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.