Abstract

Determining the effect of defects in fiber-reinforced materials, such as polymer matrix composites (PMCs), can be studied by creating artificial flaws in these materials, for example by introducing artificial PTFE foil to induce material delaminations. For fiber-reinforced ceramics (CMCs), this approach is more difficult due to the more complicated production routes of CMCs, which involve several processing steps at elevated temperatures. This work deals with the fabrication and introduction of defined defects in carbon fiber reinforced silicon carbide (C/C-SiC) composites in a way, which allows their detection by non-destructive material testing methods during and after each production step of the composite. It was shown that the defects produced using boron nitride (BN) and alumina fiber roving were stable over the entire manufacturing process and could be detected by ultrasound and x-ray tomography techniques. To determine any possible effects, an initial sampling of bending samples with artificial defects was manufactured, tested and compared with defect-free reference materials. These tests showed a lower bending strength and failure strain for the defect samples compared to samples without defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call