Abstract

We present a simple method to fabricate a polymer optical sheet with antireflection and antifogging properties. The method consists of two consecutive steps: photocross-linking of UV-curable polyurethane acrylate (PUA) resin and reactive ion etching (RIE). During photopolymerization, the cured PUA film is divided into two domains of randomly distributed macromers and oligomers due to a relatively short exposure time of 20 s at ambient conditions. Using the macromer domain as an etch-mask, dry etching was subsequently carried out to remove the oligomer domain, leaving behind a nanoturf surface with tunable roughness. UV-vis spectroscopy measurements demonstrate that transmittance of a nanoturf surface is enhanced up to 92.5% as compared to a flat PUA surface (89.5%). In addition, measurements of contact angle (CA) reveal that the etched surface shows superhydrophilicity with a CA as small as 5 degrees. To seek potential applications, I-V characteristics of a thin film organic solar cell were measured under various testing conditions. It is shown that the efficiency can be increased to 2.9% when a nanoturf film with the surface roughness of 34.73 nm is attached to indium tin oxide (ITO) glass. More importantly, the performance is maintained even in the presence of water owing to superhydrophilic nature of the film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.