Abstract

Clogging generally happens to the leachate piping system, which poses a risk to the environment. A low surface energy nanocomposite is prepared to mitigate the cloggings, by adding the fluorinated acrylate polymer and hydrophobically modified nano-silica into high-density polyethylene (HDPE) substrate. The best addition of the fluorinated acrylate polymer and the nano-silica is given as 15% and 5%, to produce the composite with a low surface energy of 29.4 mJ/m2. Through the characterization of contact angle (CA), electrochemical corrosion, scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS), atomic force microscope (AFM) and thermogravimetry (TG), the composite shows low wettability, good corrosion resistance and thermal stability. The surface hydrophobic property of the composite remains unchanged after being immersed in an acidic (pH = 2) and an alkaline (pH = 12) solution, indicating that the prepared composite has strong adaptability to the extreme environments. In addition, the composite shows better anti-scaling performance than that of the commercial high-density polyethylene (HDPE) and polyvinyl chloride (PVC) pipe materials by application of a dispensing leachate immersion test. The results provide insights into engineering practice for the design and manufacture of pipe materials for leachate collection and transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.