Abstract

A thin and fully dense BaCe0.6Zr0.2Y0.2O3-δ (BCZY) electrolyte for the use of anode-supported protonic fuel cells has been successfully prepared by spin coating using NiO sintering aid. The effects of NiO addition on the electrolyte microstructures and fuel cell performances are also investigated. An appropriate NiO addition has a significant positive contribution to the densification and grain growth of thin BCZY electrolytes. However, too much NiO addition gives rise to NiO aggregation in BCZY electrolyte and deteriorates the cell performance. The enhanced sintering mechanism can be mainly attributed to the oxygen vacancies generated from the NiO decomposition and bulk diffusion of Ni into BCZY perovskites. The fuel cell with a BCZY-3%NiO electrolyte exhibits the highest maximum power density of ~106.6 mW/cm2 at 800 °C among all fuel cells in this study. The electrochemical impedance characteristics of thin BCZY electrolyte fuel cells are further discussed under open circuit conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.