Abstract

Anisotropic periodic relief in form of ripples was formed on surface of amorphous hydrogenated silicon (a-Si:H) films by femtosecond laser pulses with the wavelength of 1.25 μm. The orientation of the surface structures relative to laser radiation polarization vector depended on the number of laser pulses N acting on the film surface. When N = 30, the structures with 0.88 μm period were formed orthogonal to the laser radiation polarization; at N = 750 the surface structures had period of 1.12 μm and direction parallel to the polarization. The conductivity of the laser-modified a-Si:H films increased by 3 to 4 orders of magnitude, up to 3.8·10–5 (Ω∙cm)–1, due to formation of nanocrystalline Si phase with a volume fraction from 17 to 30%. Anisotropy of the dark conductivity, as well as anisotropy of the photoconductivity spectral dependences was observed in the modified films due to depolarizing influence of periodic microscale relief and uneven distribution of nanocrystalline Si phase within such laser-induced structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call