Abstract

The fabrication of a hybrid device architecture fully integrating a transparent organic light-emitting diode (OLED) and a liquid crystal display (LCD) within two glass substrates is reported in this study. The transparent OLED was fabricated on the inner surface of the glass substrate. Twisted nematic liquid crystal (LC) materials were used to fill the space between the two glass substrates. The OLED was driven by an indium-tin oxide (ITO) anode on the glass substrate and a thin bi-metal (Al/Ag) cathode, which also served as the electrode of the LCD. The other electrode for the LCD-mode operation was the ITO on the other glass substrate. A commercially available ultraviolet (UV)-curable resin was spun onto the thin Al/Ag as the passivation layer to protect the OLED from attacks by the following polyimide layer (serving as the alignment layer of the LCD), rubbing process and LC materials. In this device structure, the electrical characteristic of the OLED-mode operation was almost the same as that of the control device. Current efficiency (in terms of cd/A) of the hybrid device from top-emission (towards the LCD) decreased by 26.5% due to optical interference effect, whereas efficiency from bottom-emission remained the same. The driving voltage of the LCD-mode operation increased by 1.6V due to the insertion of the passivation layer between the two electrodes. The contrast ratio decreased from 150 to 25 due to the reflection of the thin Al/Ag layer. Compared with that of the control device, the storage lifetime of the OLED increased as a result of filling the encapsulated cavity with LC materials, which helped repel ambient water and oxygen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call