Abstract

In this paper, we describe a novel approach for fabricating an optoelectrochemical microring array. The array was fabricated by coating individual optical fibers of 25-microm diameter with a 1-microm layer of gold nanoparticles via electroless gold deposition. A SAM layer around the individual gold-coated imaging fibers prevented electrical contact with neighboring ring electrodes. To achieve better mechanical stability and to make the device more practical, the electrode/fiber bundle comprising approximately 600 individual gold-coated optical fibers was dipped into epoxy. By polishing the ends of such a device, a ring microelectrode array comprising 600 individual and insulated ring electrodes was formed. To limit diffusional overlap of current, only 20-30% of the microring fiber/electrodes were wired. The inner diameter of the ring electrode is fixed by the diameter of the individual optical fibers (25 microm), while the outer radius is determined by the thickness of the deposited gold. The array was characterized using ferrocyanide in aqueous solution as a model electroactive species to demonstrate that this microelectrode array format exhibits steady-state currents at short response times. In addition, cyclic voltammetry experiments were performed using conventional potentiostats due to the amplification of current inherent in the array format. Finally, electrochemiluminescence at the ring electrode array was demonstrated through the oxidation of Ru(bpy)3(2+) in tri-n-propylamide in a pH 7 phosphate buffer solution, where the light generated was collected and detected via the fiber bundle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.