Abstract

Composite anodes of nano-sized Ni and Ba(Zr0.85Y0.15)O3-δ (BZY) were fabricated by infiltrating a single precursor solution of BZY and Ni into the BZY scaffold, and decreasing the calcination temperature to 1173 K. This decrease in the fabrication temperature of the Ni-cermet anode prevents the chemical reaction between the electrolyte and nickel, thus preventing a reduction in the conductivity of the electrolyte. By optimizing the amount of Ni in the Ni-cermet and infiltrating additional catalysts such as CeO2 and Pd, the non-ohmic ASR of the Ni-cermet anode could be optimized. This resulted in a smaller non-ohmic ASR of anode than one that was fabricated by the conventional co-sintering method. Consequently, a high power density of 790 mW/cm2 at 973 K can be obtained from electrolyte-supported cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call