Abstract

Gas sensing technology is currently applied in a variety of applications. In medical applications, gas sensors can be used for the detection of the biomarker in various diseases, metabolic disorders, diabetes mellitus, asthma, renal, liver diseases, and lung cancer. In this study, we present acetone sensing characteristics of Si-doped WO3 nanorods prepared by a DC reactive magnetron co-sputtering with an oblique-angle deposition (OAD) technique. The composition of Si-doped in WO3 has been studied by varying the electrical input power applied to the Si sputtered target. The nanorods film was constructed at the glancing angle of 85°. After deposition, the films were annealed at 400 °C for 4 h in the air. The microstructures and phases of the materials were characterized by x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The results showed that 1.43 wt% Si-doped WO3 thin film exhibited the maximum response of 5.92 towards 100 ppm of acetone at performing temperature (350 °C), purifying dry air carrier. The process exposed in this work demonstrated the potential of high sensitivity acetone gas sensor at low concentration and may be used as an effective tool for diabetes non-invasive monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.