Abstract

High-quality AlN templates fabricated by sputtering-deposition and post-deposition high-temperature annealing have great potential for deep ultraviolet light-emitting device applications. In this work, we fabricated AlN films on 6H-SiC substrates by sputtering and face-to-face annealing and characterized the structural quality of the AlN films before and after annealing. As reported in previous studies, to accomplish high-quality AlN films on SiC substrates using conventional methods, such as molecular beam epitaxy or metalorganic vapor phase epitaxy (MOVPE), it is important to grow the AlN on the SiC coherently. However, in this work, although the annealed AlN films were fully relaxed from the SiC substrates, or even had tensile strain, the AlN films indicated high crystallinity. The X-ray rocking curve full width at half maximum (XRC-FWHM) values of the 200-nm-thick annealed AlN film were 17 and 246 arcsec for the AlN (0002) and (10–12) diffraction, respectively. Though the annealed AlN film indicated rough surfaces with bunched step structures, the surface morphology was remarkably improved by MOVPE growth and clear atomic step-and-terrace structures were formed. The XRC-FWHM values of the MOVPE-grown AlN were 90 and 239 arcsec for the AlN (0002) and (10–12) diffraction, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.