Abstract

CaTiO₃nanoparticles of 30-40 nm in size were synthesized via a polyacrylamide gel route. Ag nanoparticles with size of 8-16 nm were deposited onto CaTiO₃particles by a photochemical reduction method to yield CaTiO₃@Ag composites. The photocatalytic activity of prepared samples was evaluated by degrading methyl orange under ultraviolet irradiation. It is demonstrated that Ag-decorated CaTiO₃ particles exhibit an enhanced photocatalytic activity compared to bare CaTiO₃ particles. After 60 min of photocatalysis, the degradation percentage of MO increases from 54% for bare CaTiO₃particles to 72% for CaTiO₃@Ag composites. This can be explained by the fact that photogenerated electrons are captured by Ag nanoparticles and photogenerated holes are therefore increasingly available to react with OH⁻/H₂O to generate hydroxyl (·OH) radicals. ·OH radicals were detected by fluorimetry using terephthalic acid as a probe molecule, revealing an enhanced yield on the irradiated CaTiO₃@Ag composites. In addition, it is found that the addition of ethanol, which acts as an ·OH scavenger, leads to a quenching of ·OH radicals and simultaneous decrease in the photocatalytic efficiency. This suggests that ·OH radicals are the dominant active species responsible for the dye degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call