Abstract

Triclosan (TCS) is a typical environmental pollutant, which seriously threatens the health of humans and organisms. A novel strategy of biochar/Ag3PO4/polyaniline (PANI) composite photocatalyst was synthesized by a facile chemical precipitation method to efficiently degrade TCS. XRD, Raman, ESR, etc. were used to reveal the effective associations among physiochemistry, photochemistry and photocatalytic properties of the composite. It was proved the synergistic effects of biochar (T-Bio) and PANI resulted in the decrease of Ag3PO4 particle size, the enhancement of adsorption, the improvement of light utilization, the increase of photogenerated carrier separation and the promotion of reactive species. The photocatalytic mechanism showed h+ was the main active species, O2− and OH played minor roles. Under the irradiation of visible light, the optimal photocatalyst (1.0% T-Bio/AP/1.0% PANI) displayed excellent photocatalytic activity with the removal rate of 85.21% for TCS within 10 min, and the apparent rate constant K′ was 2.38 times of Ag3PO4. 11 main intermediates for TCS degradation were identified, and their toxicity was significantly reduced. The possible degradation pathways were proposed. This work is the first systematic study on the degradation behavior of TCS by Ag3PO4-based photocatalyst, and it provides a new approach to fabricate photocatalysts with synergistic effects and amazing photocatalytic activity by biochar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.