Abstract

In this study, a new double pin tool was utilized for the development of AA6061/316 stainless steel reinforced composite by employing the friction stir processing technique for the first time. The microstructure, hardness, tensile, tribological, and corrosion behaviors of the fabricated composites were investigated and comparative assessments were made with the results obtained from the single-pin tool. The results showed that particle-matrix reaction did not occur in the composites irrespective of the nature of the tool profile. The double-pin tool outstandingly boosted the grain refinement (7.01–5.78 μm), particle fragmentation, and distribution within the Al matrix due to the additional pin-assisted plastic deformation, high straining, dynamic recrystallization, and Zener pinning effects. The double-pin tool improved the microhardness (127–141 HV), tensile strength (162–233 MPa), and corrosion resistance of the composite with respect to the single-pin tool counterparts. The replacement of the single pin tool with a double pin tool diminished the specific wear rate (0.38–0.22 mm3/Nm) of the composite. The double-pin tool has a favorable impact on the structure, mechanical, and corrosion behaviors of the AA6061/316 stainless steel reinforced composite. It is thus recommended for composite development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.