Abstract
With increasing interest in nanometer scale studies, a common research issue is the need to use different analytical systems with a universal substrate to relocate objects on the nanometer scale. Our paper addresses this need. Using the delicate milling capability of a focused ion beam (FIB) system, a region of interest (ROI) on a sample is labelled via a milled reference grid. FIB technology allows for milling and deposition of material at the sub 20-nm level, in a similar user environment as a standard scanning electron microscope (SEM). Presently commercially available transmission electron microscope (TEM) grids have spacings on the order 100 mum on average; this technique can extend this dimension down to the submicrometre level. With a grid on the order of a few micrometres optical, FIBs, TEMs, scanning electron microscopes (SEMs), and atomic force microscopes (AFM) are able to image the ROI, without special chemical processes or conductive coatings required. To demonstrate, Au nanoparticles of approximately 25 nm in size were placed on a commercial Formvar- and carbon-coated TEM grid and later milled with a grid pattern. Demonstration of this technique is also extended to bulk glass substrates for the purpose of sample location. This process is explained and demonstrated using all of the aforementioned analytical techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.