Abstract

In this research, the fabrication process of a super-hydrophobic metallic surface using laser ablation and electrodeposition was investigated. Re-entrant structure and surface roughness play an important role in forming a super-hydrophobic surface on intrinsically hydrophilic material. A micro pillar array with a re-entrant structure of copper on stainless steel was fabricated through a sequential process of laser ablation, insulating, mechanical polishing and electrodeposition. Spacing of the micro pillars in the array played a major role in the structure hydrophobicity that was confirmed by measuring the water contact angle. Surface morphology changed relative to the parameters of the laser ablation process and electrodeposition process. Under a gradual increase in current density during the electrodeposition process, surface morphology roughness was maximized for fabricating a super-hydrophobic surface. Finally, the super-hydrophobic surface was successfully fabricated on metal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.