Abstract

Polymers are used widely in various kinds of drilling fluid to maintain the proper rheological properties. However, most of them are not available for high-temperature or salt solutions due to poor temperature and salt resistance. To ameliorate the temperature and salt resistance of polymer used in the solid-free water-based drilling fluid, a novel polymer with a kind of "Mesh-Lock" reinforced network cross structure, named PLY-F [main monomer acrylic acid (AA), acrylamide (AM), functional monomers 2-acrylamide-2-methylpropanesulfonic acid (AMPS) N-vinylpyrrolidone (NVP) and C16DMAAC] were prepared through free radical polymerization of an aqueous solution of organic cross-linking agent pentaerythritol triallyl ether (PTE) as a cross-linking system, Potassium persulfate (KPS) and sodium bisulfite as the initiator for the first time. The surface morphology, crosslinking architecture and temperature and salt resistance of the PLY-F were fully characterized with several means including SEM, FT-IR, 13CNMR, dynamic rheology, and long-term thermal stability. The SEM observation indicated that the PLY-F exhibits a regular “Mesh-Lock” reinforced network cross structure. FT-IR, 13CNMR analysis indicated that the characteristic functional groups of each monomer such as AM, AA, AMPS and NVP were all together in the polymer. The results show that the apparent viscosity retention rate of the PLY-F in the potassium formate solution (with a density of 1.3 g/cm3) was more than 80% after heat rolling for 72 h at 200 °C and the plastic viscosity retention rate reached 90.3%. Moreover, the salt resistance of the polymer can reach the density of 1.4 g/cm3 (potassium formate solution) under 200 °C and the temperature resistance can reach 220 °C under the density of 1.3 g/cm3 (potassium formate solution). Besides, the PLY-F still has good rheological properties in other saturated solutions (NaCl, HCOONa) under 210 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.