Abstract

A thin, waterproof, and stable spatially tunable band reject filter is fabricated based on a chiral nematic liquid crystal polymer. The fabrication method for this filter is new, to the best of our knowledge, and straightforward. The photonic bandgap (PBG) of the proposed filter can be tuned from 350 nm to 760 nm by a mechanical movement of 6.5 mm. The filter reflects almost 50% of unpolarized incident light in the PBG and remains practically transparent for other wavelengths. The filter remains stable for four years and has acceptable resistance to polar protic solvents and thermal stability up to 90°C. The filter can be detached from the glass substrates, to be used as a thin 8-µm free-standing film or to be attached to a flexible substrate. This spatial tunable band reject filter may be used in displays, optical devices, and optical communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call