Abstract

Fabrication of a quasicrystal electrode at a low processing temperature via electrohydrodynamic and transfer printing for use in multifunctional electronics is demonstrated using an electrohydrodynamic narrow nozzle-to-substrate distance printing method to obtain a quasicrystal electrode (transferred electrode), which can increase electrode durability with a better surface roughness and lower processing cost with low-temperature processing, for use in multifunctional electronics. As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call