Abstract

Herein, we fabricated fluorine-containing, polymer-based, flexible neural probes with fluorinated ethylene propylene (FEP) films as the substrates and photo-crosslinkable fluoropolymers as the passivation material. For fabrication, metal-free Au layer formation on the FEP film, the simultaneous photo-adhesion and photo-patterning technique, and the pulsed-laser scanning probe shaping technique were combined, followed by Au electrode surface modification. The resultant probes achieved a charge injection limit equal to 5.18 mC cm−2 by implementing iridium oxide-modified nanoporous Au (IrOx/NPG) structures. We performed simultaneous in vivo micro-stimulations of the Schaffer collateral fibres and recorded the evoked field excitatory postsynaptic potentials (fEPSPs) in the stratum radiatum layer of the hippocampal Cornu Ammonis 1 region using a single probe. Inducing the fEPSP at very low charge per pulse settings (3.2–3.6 nC/pulse) indicates the efficient charge injection capability of the IrOx/NPG electrode, thereby enabling safe, prolonged, and thrifty micro-stimulations. Furthermore, the single probe-induced and recorded long-term potentiation persisted for periods longer than 60 min following theta-burst stimulation. The materials used in this study are all biocompatible and chemically robust. The fabricated neural probes can be applied in chronic clinical trials in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call