Abstract
The phenomenon of continuous directional water transport on the peristome surface of Nepenthes alata (N. alata) has been found to be of great significance to the applications of microfluids, anti-adhesion surface texture, lubrication and so on. Various methods are used to fabricate the bionic structure of the peristome surface. However, the size of processing area and the fabrication material are limited in the previous methods, which results in the limitation of the bionic structure applications. In order to solve the remained problems of small-scale and limited materials, the mechanical machining is creatively applied to the fabrication of bionic structure of peristome surface of N. alata in this paper. An elliptical vibration cutting system (EVC) driven by mechanical structure is designed and built to satisfy the size requirements of the bionic structure. The surface topographies corresponding to the tool trajectories of cutting and extrusion are obtained, respectively. The results demonstrate that both the two methods can realize the fabrication of bionic inclined microcavities while few defects can be seen on the extruded surface. According to the measured structure dimensions, it can be found the EVC system keeps a superior machining repeatability. As a consequence, the availability of the newly proposed method for the large-area fabrication of the bionic structure is verified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.