Abstract

A novel superhydrophobic and superoleophilic surface was fabricated by one-step electrodeposition on stainless steel meshes, and the durability and oil/water separation properties were assessed. Field emission scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), fourier transform infrared spectroscopy (FT-IR) and optical contact angle measurements were used to characterize surface morphologies, chemical compositions, and wettabilities, respectively. The results indicated that the as-prepared mesh preformed excellent superhydrophobicity and superoleophilicity with a high water contact angle (WCA) of 162±1° and oil contact angle of (OCA) 0°. Meanwhile, the as-prepared mesh also exhibited continuous separation capacity of many kinds of oil/water mixtures, and the separation efficiency for lubrication oil/water mixture was about 98.6%. In addition, after 10 separation cycles, the as-prepared mesh possessed the WCAs of 155±2°, the OCAs of 0° and the separation efficiency of 97.8% for lubrication oil/water mixtures. The as-prepared mesh also retained superhydrophobic and superoleophilic properties after abrading, immersing in salt solutions and different pH solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.