Abstract

Polyhedron-like WO3 (n-type WO3) nanoparticles were synthesized by a simple hydrothermal reaction without using any template or surfactant. The Polyhedron-like WO3/Ag2CO3 p-n junction photocatalyst was first synthesized by a simple impregnation-deposition way. The obtained samples were investigated by XRD, BET, XPS, SEM, TEM etc. The separation mechanisms of photo-induced electrons (e−) and photo-induced holes (h+) of the Polyhedron-like WO3/Ag2CO3 p-n junction samples were characterized by PL technique, EIS and determination of active sites and species in the photocatalytic reactions. In this p-n junction structure, Polyhedron-like WO3 nanoparticles adhered to the surface of the Rod-like p-type Ag2CO3 nanoparticles. The Polyhedron-like WO3/Ag2CO3 p-n junction photocatalyst showed much higher photocatalytic activity than both single materials for RhB degradation under UV–vis light irradiation, and even 17 times higher than commercial powders (P25) at the same circumstance. Even compared with the related photocatalyst, it still exhibits the highest photocatalytic ability. The highly enhanced photocatalytic of the Polyhedron-like WO3/Ag2CO3 p-n junction photocatalyst can be attributed to extended absorption, more effective separation of photogenerated charges, the transfer rate of photo-induced charge carriers and forming of p-n junction system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call