Abstract

A tin disulfide and multi-walled carbon nanotube (SnS2/CNTs) electrochemical sensor was constructed for the sensitive and selective determination of rutin in plants. Tin disulfide nanoflowers with various particle sizes were prepared by controlling the reaction time and composited with multi-walled CNTs. The morphology, crystal structure, and chemical composition of these SnS2/CNTs composites were characterized using XRD, XPS, and SEM-EDS. Results illustrated that the SnS2/CNTs had a large specific surface area, good conductivity, and remarkable electrocatalytic performance. The pH of the buffer solution, the scanning rate, and the amount of modified material were also optimized for the rapid detection of rutin. A 2-electron-2-proton mechanism, involving a few rapid and consecutive stages, was speculated to occur during rutin oxidation, based on the observed slope of -53 mV/pH. There was an appreciable linear relationship between the reductive peak current from DPV and the rutin concentration, ranging from 0.005-0.05 µmol/L and 0.1-6 µmol/L, with a detection limit of 0.22 nmol/L (S/N = 3). The sensor also demonstrated good selectivity, excellent sensitivity, and reproducibility when analyzing rutin in real plant samples, with satisfactory recovery, and was also highly consistent with results of HPLC, and thus could be used to evaluate the medicinal value of natural vegetation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call