Abstract

A facile and novel method for the fabrication of mixed matrix membranes (MMMs) has been developed, i.e., in situ synthesis of quaternized polyethylenimine (QPEI) soft nanoparticles (SNPs) followed by quaternization with bromoethane in poly(ether sulfone) (PES) casting solution. The resulting composite membranes were constructed via phase inversion method. The influences of SNPs on the morphology and performance of the hybrid membranes were systematically investigated by scanning electron microscopy, dynamic water contact angle, antifouling measurement, etc. The composite membranes exhibited a thin top layer and porous finger-like structure, which were greatly affected by in situ synthesized SNPs. Contact angle and water uptake measurements indicated that the hydrophilicity of hybrid membranes markedly improved in contrast with that of unfilled membrane. Meanwhile, the water flux of the membranes significantly enhanced due to the incorporation of SNPs. The ion-exchange capacity (IEC) value could achieve as...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call