Abstract

Fabry-Pérot etalons (FPE) have found their way into many applications. In fields such as spectroscopy, telecommunications, and astronomy, FPEs are used for their high sensitivity as well as their exceptional filtering capability. However, air-spaced etalons with high finesse are usually built by specialized facilities. Their production requires a clean room, special glass handling, and coating machinery, meaning commercially available FPEs are sold for a high price. In this article, a new and cost-effective method to fabricate fiber-coupled FPEs with standard photonic laboratory equipment is presented. The protocol should serve as a step-by-step guide for the construction and characterization of these FPEs. We hope thiswill enable researchers to conduct fast and cost-effective prototyping of FPEs for various fields of application. The FPE, as presented here, is used for spectroscopic applications. As shown in the representative results section via proof of principle measurements of water vapor in ambient air, this FPE has a finesse of 15, which is sufficient for the photothermal detection of trace concentrations of gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call