Abstract

AbstractThe photosensing properties of flexible large‐area nanowire (NW)‐based photosensors are enhanced via in situ Al doping and substrate straining. A method for efficiently making nanodevices incorporating laterally doped NWs is developed and the strain‐dependent photoresponse is investigated. Photosensors are fabricated by directly growing horizontal single‐crystalline Al‐doped ZnO NW arrays across Au microelectrodes patterned on a flexible SiO2/steel substrate to enhance the transportation of carriers and the junction between NWs and electrodes. The Raman spectrum of the Al:ZnO NWs, which have an average diameter and maximum length of around 40 nm and 6.8 μm, respectively, shows an Al‐related peak at 651 cm−1. The device shows excellent photosensing properties with a high ultraviolet/visible rejection ratio, as well as extremely high maximum photoresponsivity and sensitivity at a low bias. Increasing the tensile strain from 0 to 5.6% linearly enhances the photoresponsivity from 1.7 to 3.8 AW−1 at a bias of 1 V, which is attributed to a decrease in the Schottky barrier height resulting from a piezo‐photonic effect. The high‐performance flexible NW device presented here has applications in coupling measurements of light and strain in a flexible photoelectronic nanodevice and can aid in the development of better flexible and integrated photoelectronic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.