Abstract

Sustainable low-cost cellulose-based electronics has exhibited brighter prospects. In this study, a laminated felt-like electromagnetic shielding material was prepared by using cellulose paper as the matrix through the self-foaming effect in electroless nickel plating process in which an efficient palladium-free activation was conducted that alkaline sodium borohydride (NaBH4) reduced nickel ions into nickel cluster to initiate the plating process. NaOH concentration in NaBH4 solution, pH of the plating bath and the plating time affected the thickness, metal deposition and surface resistance of the electromagnetic shielding material. By understanding the morphology, inner structure, chemical component and thermal stability, the pH in the plating solution is a key for the preparation. When the pH was 8.51, the electromagnetic shielding effective reached 65 dB in the frequency ranges of 9 kHz to 1.5 GHz, which could shield more than 99.99% electromagnetic radiation. This work offers a novel and feasible path to develop functional cellulose-based materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call