Abstract
Polypyrrole (PPy)/poly(methyl methacrylate) (PMMA) core/shell nanospheres with diameters of several tens of nanometers have been synthesized by two-step microemulsion polymerization, and highly transparent conductive thin films have been fabricated using the nanospheres as a filler in a PMMA matrix. The PPy/PMMA core/shell nanoparticles and their composite films have been extensively characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) and UV-vis spectroscopies, and electrical-conductivity measurements. The fabricated polymer films containing the PPy/PMMA core/shell nanofillers show a much better transparent conductive performance than that of uncoated PPy nanoparticles with similar dimensions or bulk PPy particles with diameters of several hundreds of nanometers. The PMMA shell promotes compatibility of the conductive fillers with the PMMA matrix and enhances dispersion of the PPy/PMMA core/shell nanofillers. In addition, the nanometer-thick PMMA shell has a lower glass-transition temperature (Tg), and can be effectively annealed to form a conductive-filler network with a high electrical conductivity at a relatively low filler content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.