Abstract

Transparent and stretchable electrodes (TSEs) are a key technology for the next generation of stretchable electronics and optoelectronics. Metallic nanofibers are widely used because of their good optoelectrical properties, but they demonstrate low stretchability. To enhance stretchability, fabricating in-plane buckled nanofibers with the aid of a prestrained substrate has become crucial in this research field. Here, a composite comprising shape memory polymer-TSE (SMP-TSE) using crosslinked polycyclooctene as a substrate, which shows wrinkle-free deformation and switchable optical transparency, is fabricated. Because of its considerable elongation without residual strain and the shape memory behavior of polycyclooctene, in-plane buckled nanofibers are formed effectively. For fabrication of SMP-TSE, continuous and thin metallic nanofiber that can maintain its structural integrity is required; therefore, electrospinning and an ultraviolet reduction process to create a free-standing, conductive, nanofiber network are used. Because of its in-plane buckled nanofibers, the electrode maintained its resistance during 3000 cycles of a bending test and 900 cycles of a tensile test. Furthermore, SMP-TSE is able to electrically control its temperature, optical transparency, elastic modulus, and shape memory behavior. Finally, the use of SMP-TSE in a smart display that can control its optical and mechanical properties is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.