Abstract

Herein, we propose a silicone-based conductive composite textile (CCT) with an excellent durability and electrical conductivity by optimizing the thermal curing process for the conductive silicone. The proposed conductive textile was prepared via a thermal curing process after the screen printing of a silicone composite containing a conductive filler on the textile surface. During thermal curing, the silicone polymer present on the textile surface underwent thermal diffusion and penetrated the fabric substrate. As a result, a mechanically interlocked structure was formed between the infiltrated silicone and the fiber to provide a high elasticity, and the silicone remaining on the textile surface formed a hybrid cross-linked structure connecting the conductive fillers to produce an excellent conductive network. An excellent elastic recovery (78.3%) was found for CCT prepared at 150 °C for 4 min during the initial stage of the cyclic strain recovery test, and the high strain recovery rate was maintained even after 10 cycles. Scanning electron microscopy-energy dispersive spectroscopy revealed no significant change in the internal structure even under repeated strain, and an excellent electrical resistance (68 Ω) was maintained even after the application of repeated stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.