Abstract

Hazardous substances produced by anthropic activities threaten human health and the green environment. Gas sensors, especially those based on metal oxides, are widely used to monitor toxic gases with low cost and efficient performance. In this study, electron beam lithography with two-step exposure was used to minimize the geometries of the gas sensor hotplate to a submicron size in order to reduce the power consumption, reaching 100 °C with 0.09 W. The sensing capabilities of the ZnO nanofilm against NO2 were optimized by introducing an enrichment of oxygen vacancies through N2 calcination at 650 °C. The presence of oxygen vacancies was proven using EDX and XPS. It was found that oxygen vacancies did not significantly change the crystallographic structure of ZnO, but they significantly improved the electrical conductivity and sensing behaviors of ZnO film toward 5 ppm of dry air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.