Abstract

This study outlines the development of a low line density, small blaze angle grating, optimized for a visible to short-wave infrared hyperspectral camera. An analysis of grating specifications was conducted to meet the precise requirements of this application, particularly focusing on the stringent tolerance limits for the blaze angle. A specialized ruling tool adjustment device was designed to adhere to these exacting blaze angle tolerances. The grating groove shape was examined using atomic force microscopy (AFM), and the theoretical diffraction efficiency of the grating was calculated based on these observations. Additionally, laser-based methods were employed to measure the actual diffraction efficiency of the grating, while interferometry was used to assess the grating’s diffraction wavefront. The test results demonstrate our capability to fabricate high-quality gratings with a low line density and small blaze angles that are suitable for advanced hyperspectral imaging applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call