Abstract
In the long-term working state, stains such as dust, oil, and charged particles in the environment are prone to deposit on the surface of the power equipment, which has great security risks. To achieve anti-stain performance, fluorocarbon composite coating with a low surface energy was prepared and studied. In this paper, SiO2 nanoparticles were used as inorganic fillers and fluorocarbon resin was used as the substrate to form anti-stain coatings. By adjusting and optimizing the ratio of fillers and organic resins, coatings with different static contact angles were constructed. The optimum composite coating has a contact angle of 151 ± 2° and a surface energy of 9.6 mJ/m2. After high-temperature treatment (up to 200 °C), immersion in corrosive solutions (pH 3-11), and sandpaper abrasion (after 5 abrasion cycles), the coating has been proven to show good thermal, chemical and mechanical stability. Our study provides significant research and market opportunities for the anti-stain application of the fluorocarbon composite coating on power equipment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.