Abstract

In this study, flower-like copper oxide film was prepared on the surface of 316L nanoporous stainless steel (Cu/NPSS) by anodization-assisted electrodeposition. The prepared NPSS and Cu/NPSS were evaluated with Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX) and X-ray diffractometer (XRD). Based on local use of common diseases, the antibacterial activity of Cu/NPSS against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was investigated. The diameters of the as-formed nanopores were about 93 nm at 50 V. Cu film was successfully deposited on the surface of NPSS. The presence of Cu and O was detected in the surface of Cu/NPSS by EDX analyses. The results obtained for Cu/NPSS revealed a marked antibacterial ability. The growth inhibition rates of Cu/NPSS against E. coli and S. aureus were 99.6% and 97.4% within 12 h, respectively. This may be because of the small size and high surface-to-volume ratio of the material in addition to the release of metal ions in solution. Accordingly, Cu/NPSS will help broaden promising applications in fields of biomedical implants and devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call