Abstract

Intermolecular forces and morphology demonstrated that there was an excellent compatibility between silk fibroin and gelatin. The silk fibroin/gelatin composite vascular scaffold (inner diameter 4.5 mm) was prepared successfully by electrospinning. The scaffold was treated with ethanol to enhance the water-resistant ability and biomechanical properties. After ethanol treatment, the scaffold could hardly dissolve in the water, and FTIR showed that the conformation of the treated silk fibroin/gelatin composite vascular scaffold was mainly β-sheets. The electrospun silk fibroin/gelatin vascular scaffold possessed outstanding biomechanical properties. In vitro cell culture and in vivo subcutaneous implantation demonstrated that the electrospun silk fibroin/gelatin vascular scaffold had an appropriate biocompatibility. The results indicated that the electrospun silk fibroin/gelatin composite vascular scaffold could be considered as an ideal candidate for tissue-engineered blood vessel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call