Abstract
Carbon nanofiber-based supercapacitors have broad prospects in powering wearable electronics owing to their high specific capacity, fast charge/discharge process, along with long-cycling life. Herein, a poly(acrylonitrile-co-β-methylhydrogen itaconate) copolymer was prepared and used to synthesize flexible hollow carbon nanofibers (HCNFs) via an electrospinning method without breaking after multiple bending. Subsequently, the inner and outer surfaces of HCNFs were evenly covered with ordered needle-like polyaniline (PANI) through in-situ polymerization methods to obtain three-dimensional flexible HCNFs/PANI composites, which exhibited a high capacity 1196.7 F/g at 1 A/g and good cycling stability (90.1% retention at 5 A/g after 3000 cycles). The symmetrical supercapacitor based on the HCNFs/PANI composites also delivered an outstanding electrochemical performance with high energy/power density (60.28 Wh/kg at 1000 W/kg) and superior cycling durability (90% capacitance retention after at 5 A/g 3000 cycles), which confirmed that the HCNFs/PANI composites had a wide application potential in flexible energy storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.