Abstract

Microtia reconstruction is technically challenging due to the intricate contours of the ear. It is common practice to use a two-dimensional tracing of the patient's normal ear as a template for the reconstruction of the affected side. Recent advances in three-dimensional (3D) surface scanning and printing have expanded the ability to create surgical models preoperatively. This study aims to describe a simple and affordable process to fabricate patient-specific 3D ear models for use in the operating room. Applied basic research on a novel 3D optical scanning and fabrication pathway for microtia reconstruction. Tertiary care university hospital. Optical surface scanning of the patient's normal ear was completed using a smartphone with facial recognition capability. The Heges application used the phone's camera to capture the 3D image. The 3D model was digitally isolated and mirrored using the Meshmixer software and printed with a 3D printer (MonopriceTM Select Mini V2) using polylactic acid filaments. The 3D model of the ear served as a helpful intraoperative reference and an adjunct to the traditional 2D template. Collectively, time for imaging acquisition, editing, and fabrication was approximately 3.5 hours. The upfront cost was around $210, and the recurring cost was approximately $0.35 per ear model. A novel, low-cost approach to fabricate customized 3D models of the ear is introduced. It is feasible to create individualized 3D models using currently available consumer technology. The low barrier to entry raises the possibility for clinicians to incorporate 3D printing into various clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call