Abstract

Electrochemical stability of energy storage devices is one of their major concerns. Polymeric binders are generally used to enhance the stability of the electrode, but the electrochemical performance of the device is compromised due to the poor conductivity of the binders. Herein, 3D binder-free electrode based on nickel oxide deposited on graphene (G-NiO) was fabricated by a simple two-step method. First, graphene was deposited on nickel foam via atmospheric pressure chemical vapour deposition followed by electrodeposition of NiO. The structural and morphological analyses of the fabricated G-NiO electrode were conducted through Raman spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray spectroscopy (EDS). XRD and Raman results confirmed the successful growth of high-quality graphene on nickel foam. FESEM images revealed the sheet and urchin-like morphology of the graphene and NiO, respectively. The electrochemical performance of the fabricated electrode was evaluated through cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) in aqueous solution at room temperature. The G-NiO binder-free electrode exhibited a specific capacity of ≈ 243 C g−1 at 3 mV s−1 in a three-electrode cell. A two-electrode configuration of G-NiO//activated charcoal was fabricated to form a hybrid device (supercapattery) that operated in a stable potential window of 1.4 V. The energy density and power density of the asymmetric device measured at a current density of 0.2 A g−1 were estimated to be 47.3 W h kg−1 and 140 W kg−1, respectively. Additionally, the fabricated supercapattery showed high cyclic stability with 98.7% retention of specific capacity after 5,000 cycles. Thus, the proposed fabrication technique is highly suitable for large scale production of highly stable and binder-free electrodes for electrochemical energy storage devices.

Highlights

  • Electrochemical stability of energy storage devices is one of their major concerns

  • Raman spectrum gives useful information on the quality of the as-synthesized graphene and number of layers. These properties are typically estimated based on the ratio of I2D/IG band intensities as well as a shift in their peak positions

  • The G-Ni electrode showed the prominent graphitic characteristics of the sp[2] hybridized carbon atoms (G and D bands) well bonded on the nickel foam (NF) (Fig. 1a). This is an evidence of highly crystalline, few to multi-layered graphene sheets deposited on the NF

Read more

Summary

Introduction

Electrochemical stability of energy storage devices is one of their major concerns. Polymeric binders are generally used to enhance the stability of the electrode, but the electrochemical performance of the device is compromised due to the poor conductivity of the binders. By combining battery-grade metal oxide(s) with graphene, the electrochemical properties of the composite can be enhanced, and the specific capacity of the device can be improved ­significantly[19,20,21,22].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call